Suche

Dr. Barbara Verfürth


Wiss. Mitarbeiterin

E-Mail: barbara.verfuerth@math.uni-augsburg.de
Telefon: +49 821 598 - 2244
Raum: 3034 (Gebäude L)
Hausanschrift: Universitätsstr. 14
86159 Augsburg



Forschungsinteressen

  • Mehrskalen (Finite Elemente) Methoden
  • (Numerische) Homogenisierung
  • Wellenprobleme, insbesondere zeitharmonische Maxwell-Gleichungen


Kurzer Lebenslauf

10/10 - 02/15     Mathematikstudium (Bachelor und Master, Nebenfach Physik), WWU Münster
03/15 - 09/18 Wissenschaftliche Mitarbeiterin, WWU Münster; Promotion 06/18
01/17 - 04/17 Teilnahme am Trimester-Programm Multiscale problems, Hausdorff-Institut Bonn
seit 10/18 Wissenschaftliche Mitarbeiterin (PostDoc), Universität Augsburg


Auszeichnungen/Preise

  • Dissertationspreis der WWU Münster 2018


Lehre

SoSe 2018 (WWU Münster) Übungen zur Numerischen Analysis
WiSe 2018/19 Seminar:Einführung in Differentialgleichungen in 1D (Bachelor)


Publikationen

Submitted Preprints

[Pre1]    D. Peterseim, D. Varga, B. Verfürth. From Domain Decomposition to Homogenization Theory. ArXiv Preprint 1811.06319, 2018.
[Pre2]    M. Ohlberger, B. Schweizer, M. Urban, B. Verfürth. Mathematical analysis of transmission properties of electromagnetic meta-materials. ArXiv Preprint 1809.08824, 2018.

Journal articles

[A1]    B. Verfürth. Heterogeneous Multiscale Method for the Maxwell equations with high contrast. Accepted at ESAIM Math. Model. Numer. Anal., 2018 (preprint version available on arXiv).
[A2]    D. Gallistl, P. Henning, B. Verfürth. Numerical homogenization of H(curl)-problems. SIAM J. Numer. Anal., Vol. 56, No. 3, 2018, pp. 1570–1596.
[A3] M. Ohlberger, B. Verfürth. A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast. Multiscale Model. Simul., Vol. 16, No. 1, 2018, pp. 385–411.
[A4] M. Ohlberger, B. Verfürth. Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. AIMS Mathematics, Vol. 2, No. 3, 2017, pp. 458–478.
[A5] P. Henning, M. Ohlberger, B. Verfürth. A new Heterogeneous Multiscale Method for time-harmonic Maxwell's equations. SIAM J. Numer. Anal., Vol. 454, No. 6, 2016, pp. 3493–3522.

Conference proceedings

[Proc1]    B. Verfürth. Numerical homogenization for indefinite H(curl)-problems. In Proceedings of Equadiff 2017 conference, edited by K. Mikula, D. Sevcovic, J. Urban, pp. 137–146, 2017.
[Proc2] P. Henning, M. Ohlberger, B. Verfürth. Analysis of multiscale methods for time-harmonic Maxwell's equations. In Proc. Appl. Math. Mech. 16, pp. 559–560, 2016.

Theses

[Th1]    B. Verfürth. Numerical multiscale methods for Maxwell's equations in heterogeneous media. Dissertation, WWU Münster, 2018.
[Th2] B. Verfürth. Numerical analysis of multiscale methods for Maxwell equations. Masterarbeit, WWU Münster, 2015.
[Th3] B. Verfürth. Homogenisierung für nichtlineare Hindernisprobleme. Bachelorarbeit, WWU Münster, 2013.


Vorträge

2018

10/18     Multiscale methods for Maxwell's equations in heterogeneous media with high contrast. GAMM workshop on numerical analysis, Augsburg.
10/18     Numerical homogenization for Maxwell's equations in heterogeneous media. 3rd German–Russian–American workshop on numerical methods and mathematical modelling in geophysical and biomedical sciences, Herrsching am Ammersee.
06/18     Numerical multiscale methods for Maxwell's equations in complex media. Interplay of multiscale data assimilation and data science with advanced PDE discretizations, Erwin-Schrödinger-Institut Wien. (invited talk)
06/18 Maxwell's equations in periodic microstructures with high contrast. European Finite Element Fair, Heidelberg. (contributed talk)
03/18 Numerical multiscale methods for Maxwell's equations in periodic media. 4th Applied Math Symposium Münster.
03/18 (Co-)Organisation des 4th Applied Math Symposium Münster.
03/18 Numerical multiscale methods for Maxwell's equations. Joint annual meeting of GDMV and DMV, Paderborn.
01/18 Multiscale methods for waves in periodic structures with high contrast. Seminar talk, Universität Augsburg.

2017

09/17     Multiscale methods for waves in periodic structures. ENUMATH 2017, Voss (Norway). (Minisymposium talk)
07/17 (Co-)Organisation eines Minisymposiums, Equadiff 2017, Bratislava.
07/17 Numerical homogenization for electromagnetic wave propagation. Equadiff 2017, Bratislava. (Minisymposium talk)
07/17 Multiscale methods for time-harmonic electromagnetic waves. Seminar talk, Karlsruhe Institut für Technologie (KIT).
03/17 Heterogeneous Multiscale Methods for time-harmonic waves in periodic media. Seminar talk, Hausdorff-Institut Bonn.

2016

11/16     Analysis of a multiscale method for highly heterogeneous Helmholtz problems. METAMATH workshop, Cargèse (Corse, France). (Invited talk)
05/17 Multiscale methods for highly heterogeneous Helmholtz problems. European Finite Element Fair, Bonn. (Contributed talk)
03/17 Analysis of multiscale methods for time-harmonic Maxwell's equations. Joint annual meeting of GAMM and DMV, Braunschweig. (Contributed talk)